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Abstract—Scaling software analysis techniques based on
source-code, such as symbolic execution and data flow analyses,
remains a challenging problem for systematically checking
software systems. The increasing availability of clusters of
commodity machines provides novel opportunities to scale these
techniques using parallel algorithms.
This paper presents ParSym, a novel parallel algorithm for

scaling symbolic execution using a parallel implementation.
In every iteration ParSym explores multiple branches of a
path condition in parallel by distributing them among available
workers resulting in an efficient parallel version of symbolic
execution. Experimental results show that symbolic execution is
highly scalable using parallel algorithms: using 512 processors,
more than two orders of magnitude speedup are observed.

I. INTRODUCTION

Inefficacy of traditional manual and random testing has
led to much recent progress in automated and systematic
testing techniques. One particularly promising technique is
symbolic execution. Although the basic idea dates back at
least three decades [15], recent advances [23], [10], [5]
have enabled symbolic execution to work for unmodified
software. The key idea behind symbolic execution is that
instead of exploring concrete program executions, the pro-
gram is executed on symbolic inputs by defining program
operations to perform symbolic manipulations. When a
branch statement is encountered during symbolic execution,
both branches are considered while recording the constraint
on symbolic inputs required to follow the corresponding
branch. At program termination or at hitting a potential bug,
the collection of constraints on symbolic inputs for that path
(called path condition) is solved (if feasible) to generate
concrete values that lead the (deterministic) program along
that same path on a concrete execution.
Covering all paths is impossible for all but trivial pro-

grams. Thus, a practical search of the program’s behaviors
needs to be depth-bounded or time capped. This has proven
to be an effective strategy for checking small units of code.
However, checking larger systems may require hours or even
days to achieve acceptable code coverage. A novel opportu-
nity for scaling symbolic execution arises from the increas-
ing availability of cheap commodity (multi-core) processors
by developing parallel algorithms for symbolic execution,
thereby increasing the efficacy of symbolic execution to
many more programs.

This paper presents ParSym, an algorithm for parallel
symbolic execution. ParSym supports the combined sym-
bolic and concrete execution model [23], [10]. In this model,
the given program is executed on an initial input (either
random or some initial values like zeroes, null, empty string
etc.). A path constraint of the execution is built (as for pure
symbolic execution). Each constraint in the path condition
represents a branch on a symbolic input. The last constraint
is negated and the path condition is solved for new concrete
inputs. This leads to the execution of the not taken side
of the last branch statement. When no new branches are
encountered and the last constraint has already been negated
once, the exploration backtracks on the path constraint to
explore previous branches.
Our insight into parallel symbolic execution is two-fold:

One, symbolic execution requires the negation of several
branch conditions, each of which must be explored; and
Two, the time to solve path conditions dominates the time
to execute a path. Symbolic execution is, therefore, likely
to benefit significantly from parallel algorithms, which can
effectively distribute the workload among different workers.
This paper makes the following contributions: 1) a novel

parallel algorithm for executing symbolic execution on a par-
allel cluster, 2) an efficient implementation of our algorithm,
and 3) evaluation of our algorithm on GREP, a C program
with 15K lines of code, and a program to perform bounded
exhaustive testing of binary trees.

II. ALGORITHM
Symbolic execution works with path conditions often

stored as complex expression trees. The main problem in
parallelizing symbolic execution is to avoid transport of
these structures between parallel nodes. Concrete inputs,
on the other hand, are usually small and can be further
compressed by using input domains (pre-decided sets of
values). We divide work such that each node gets a set of
inputs, executes the program concretely while observing the
symbolic path constraint built. It then negates each constraint
turn by turn, solves the path condition for concrete inputs
and sends the input indices to a parallel node. Thus we
minimize communication overhead.
There are three parts of our parallel symbolic execution al-

gorithm. The core symbolic execution engine that concretely
runs programs, forms path conditions, and solves constraints,



function PARSYM( workItem )
(depth, pos, inputs) ← workItem
(constraints) ← EXECANDOBSERVE(testProgram)
while depth>0 ∧ pos<SIZE(constraints) do

NEGATE(constraints[pos])
(success, inputs) ← SOLVE(constraints[0...pos])
if success then

depth ← depth-1
newWork ← (depth, pos+1, inputs)
NEWWORKITEM(newWork)

end if
NEGATE(constraints[pos])
pos ← pos+1

end while
end function

Figure 1: Parallel Symbolic Execution.

a central symbolic execution monitor that monitors the
overall process, and a symbolic execution agent that helps
the core engine communicate with the monitor.

A. Symbolic Execution Engine
Our parallel symbolic execution algorithm is based on

combined symbolic and concrete execution [23], [10]. We
start by executing the program on an initial input (zeroes,
null pointers, empty strings etc.) and observe the path it
traverses. We then negate the first constraint and solve it for
concrete values. We then move to the next constraint, negate
it, and solve all constraints up to the negated constraint in
the path condition. We repeat until we get enough solvable
constraints (depth bound) or until all constraints are solved.
Baseline symbolic execution will re-run the program after

solving the first constraint and then work on the new path
condition formed (which should only differ in the part after
the negated condition). It only backtracks to the original path
condition when it has explored all newer path conditions
exhaustively (under given depth bound).
In Figure 1, we show implementation of core engine

in function PARSYM. It receives inputs and uses them
for a concrete execution and observes the path condition
like standard symbolic execution. It then checks the path
condition from the posth position and works until all
constraints are traversed or enough new items are produced
(according to depth bound). At each position the constraint is
negated, if the resulting path condition (up to that constraint)
is solvable, it produces a new work item that is at the given
depth, whose constraints before pos+1 have been negated
once, and whose inputs are the result of solving.
We based our implementation an an open source sym-

bolic execution implementation [3], the CIL instrumentation
library [21], and the CVC3 SMT solver [1]. The SOLVE
method in Figure 1 uses the CVC3 library to solve the
constraint.
The key idea in this implementation is that the path

constraints need not be transferred to other nodes. Only

program inputs have to be transferred. Also the function
proceeds from solving smaller (and therefore easier and
quicker to solve) constraints to longer (and time taking)
constraints. Thus the quicker a work can be dispatched to
another node, the quicker it is done.
The initial work item contains the maximum depth spec-

ified by the user, index of first constraint in path condition
to be negated (zero), nothing as input (zeroes and nulls are
used as default by instrumentation). The function EXECAN-
DOBSERVE runs the instrumented program and returns the
path condition. The path condition is used by rest of the
algorithm.

B. Symbolic Execution Monitor

Symbolic Execution Monitor provides the central author-
ity that carries out symbolic execution of a program. It
starts by distributing the executable to be tested to all nodes
running symbolic execution engines using agents running
on each machine. After that it serves as master in a typical
master slave configuration [11]. It contains a work queue of
inputs to be used for symbolic execution. All other nodes
have a symbolic execution engine that contacts the monitor
for an input to process using the agent. Any new items
generated by the engines are sent back to the monitor, and
the monitor enqueues them.
The algorithm for monitor is given in Figure 2. The mon-

itor maintains a list of agents that want to work (agentQ),
agents that have no more work to do (exitQ), and a list
of pending work items (workQ). This algorithm supports
double buffering at the client (receiving the next work item
while processing the previous one) and that’s why two
queues (agentQ and exitQ) are needed. When a agent
has finished work and has not received new work in the
background, it requests for addition to the exitQ.
Double buffering is important to minimize wasted time at

the nodes performing actual symbolic execution. By the time
they finish with one input, another is ready for consumption.
This eliminates the need to have larger work divisions.
The initialWorkItem (underlined) for symbolic execution

is an initial input that can be random or some predetermined
initial values (like zeroes, nulls, empty strings etc.). It also
contains depth of current symbolic execution iteration and
position of the next constraint to be negated along with
concrete inputs to the program. The initial input contains the
depth bound and zeroth position to explore all parts of the
constraint. The algorithm loops and serves messages from
the agents.
There are three types of messages from agents to monitor:
• QUEUE: is used to ask the monitor to add new work
items to the work queue.

• DEQUEUE: is used to ask the monitor for a new work
item to process. If a work item is not readily available,
the agent is remembered in agent queue. Whenever



function MONITOR(agentCount, initialWorkItem)
workQ ← CREATEQUEUE( )
agentQ ← CREATEQUEUE( )
exitQ ← CREATEQUEUE( )
QUEUE(workQ, initialWorkItem)

while SIZE(agentQ) #=agentCount
∧ SIZE(exitQ) #= agentCount do
(agent, cmd, workItem) ← RECV(any)
if cmd = QUEUE then

if EMPTY(agentQ) then
QUEUE(workQ, workItem)

else
agent′ ← DEQUEUE(agentQ)
SEND(agent′, WORK, workItem)

end if
else if cmd = DEQUEUE then

REMOVE(exitQ, agent)
if EMPTY(workQ) then

QUEUE(agentQ, agent)
else

workItem ← DEQUEUE(workQ)
SEND(agent, WORK, workItem)

end if
else if cmd = EXIT then

QUEUE(exitQ, agent)
end if

end while
for all s← agentQ do

SEND(s, EXIT)
end for

end function

Figure 2: Algorithm for symbolic execution monitor.

work items become available, they are sent to these
free agents instead of being queued in work queue.

• EXIT: is used to tell the monitor that the agent has
finished all work and is safe to exit. However this
message does not mean that the agent will exit. In fact
it may get more work from the monitor soon.

The monitor sends only two messages back to the agents:
• WORK: is used to give new work to the agent. It is sent
in response to a DEQUEUE request so the agent should
be ready and willing to receive it.

• EXIT: is used to ask the agent to exit. It is sent only
when the agent has expressed will to exit by an EXIT
message in the other direction. Therefore it should be
able to safely exit immediately.

Safe termination of the algorithm assumes ordering of
messages between monitor and a particular agent. Simulta-
neous occurrence of a agent in exitQ and agentQ requires
that it send an EXIT message when it is in the agentQ
(due to a previous DEQUEUE message). Any later DEQUEUE
message would first remove it from exitQ. Also on a
DEQUEUE message, the monitor immediately serves a agent
if work is available. Thus simultaneous occurrence of all
agents in both these queues means that no work is available
in the workQ and all agents have finished their assigned

function AGENT( )
workItem ← CREATEBUFFER( )
workItemBack ← CREATEBUFFER( )

SEND(monitor, DEQUEUE)
SEND(monitor, EXIT)
(cmd, workItem) ← RECV(monitor)
while cmd = WORK do

SEND(monitor, DEQUEUE)
(cmd, workItemBack) ← RECVSTART(monitor)

PARSYM(workItem)

if not RECVFINISH( )then
SEND(monitor, EXIT)
WAITFORRECVFINISH( )

end if
workItem ← workItemBack

end while
end function

function NEWWORKITEM(workItem)
SEND(monitor, QUEUE, workItem)

end function

Figure 3: Algorithm for agent processors.

work. At this time the monitor terminates its loop and sends
an EXIT message to all agents.

C. Symbolic Execution Agent
Symbolic execution agents are responsible for providing

work items to the core symbolic execution engine. Algorithm
for agent processors is given in Figure 3. The two buffers
workItem and workItemBack) allow double buffering.
When one is being processed, data from the monitor is
received in the other. This allows hiding communication
overhead and latency and avoids any wasted time for the
core engine.
At the start, every agent sends the monitor processor a

DEQUEUE message followed by an EXIT message. If work
is given to the agent, the EXIT message is benign (see
Section II-B). However if there are few work items, and
the particular agent will never get any work to do, the pair
of messages will allow the monitor to remember that this
agent is free.
The agent loops until it receives WORK messages (an

EXIT message will break the loop). To process a work item
(inputs for symbolic execution), the function PARSYM in
Figure 1 is used. This function traverses the search graph
and finds new inputs for symbolic execution. Figure 3 also
shows NEWWORKITEM, a wrapper for sending an item to
the monitor.

III. EVALUATION
We evaluated parallel symbolic execution on two prob-

lems. One is symbolic execution of GREP 2.2. The other
is using symbolic execution to perform bounded exhaustive



Iterations Serial Parallel Time (Speedup)
Time 2p 8p 32p 128p 512p

1,000 0:00:28 0:00:33 0:00:10 (3x) 0:00:08 (3x) 0:00:02 (13x) 0:00:04 (6x)
10,000 0:05:15 0:05:48 0:00:59 (5x) 0:00:18 (17x) 0:00:08 (41x) 0:00:04 (70x)
100,000 1:09:23 1:17:10 0:11:14 (6x) 0:02:37 (26x) 0:00:53 (78x) 0:00:31 (135x)
650,000 TIMEOUT TIMEOUT TIMEOUT 3:47:05 0:52:35 0:13:14

(a) Symbolic Execution of GREP 2.2

Size Serial Parallel Time (Speedup)
Time 2p 8p 32p 128p 512p

5 0:00:29 0:00:34 0:00:09 (4x) 0:00:08 (4x) 0:00:13 (3x) 0:00:10 (3x)
6 0:02:05 0:02:22 0:00:23 (5x) 0:00:07 (18x) 0:00:11 (11x) 0:00:12 (10x)
7 0:08:57 0:10:08 0:01:29 (6x) 0:00:26 (21x) 0:00:13 (42x) 0:00:19 (28x)
8 0:38:18 0:43:01 0:06:18 (6x) 0:01:24 (27x) 0:00:28 (83x) 0:00:23 (99x)
9 2:44:12 3:04:37 0:26:18 (6x) 0:06:04 (27x) 0:01:36 (102x) 0:00:24 (405x)
10 TIMEOUT TIMEOUT 1:41:09 0:25:02 0:06:14 0:01:34

(b) Bounded Exhaustive Testing for Binary Trees

Table I: Performance data for using parallel symbolic execution.
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Figure 4: Plot of speedups versus number of processors.

testing of binary trees. We used Lonestar, a Linux cluster
containing Xeon 2.66GHz processors with more than 5000
cores and an InfiniBand interconnect, graciously provided by
Texas Advanced Computing Center (TACC). We tested our
executions on up to 512 processors (maximum allowance).
GREP 2.2 is a 15K lines of C code application and

sufficiently complex due to processing of regular expressions
and other search patterns on the input. We provided it with
10 symbolic characters to be searched within a string of 40
symbolic characters [3].
Bounded exhaustive testing generates all valid test inputs

within given bounds. Specialized solver Korat [2] enables
bounded exhaustive testing for complex structures. To per-
form this test, we added support for pointers to the open
source CREST tool and generated all valid binary trees from
size 5 to 10. Parallel symbolic execution enables bounded
exhaustive testing to process larger bounds and thus further
increase the confidence on the program under test.
Performance results for all our test subjects are given

in Table I. We observe that high speedups are achieved.
We achieved up to 135x speedup for GREP 2.2 whereas
an even higher 405x for bounded exhaustive testing. By
looking at the last line in both tables, we can see that
this would give an even higher speedup, but it cannot be
measured due to TIMEOUT on serial execution. TIMEOUT
is set to 5 hours. For generation of binary trees of 10 nodes,
512 processors finished the work in 90 seconds whereas

serial processor timed out in 5 hours. We also observe that
efficiency increases with problem size. For 8 processors, it
ranged between 3–6x (7x maximum possible as there are
7 agents) and for 32 processors it ranged between 17–27x
except for the smallest problems.
We plot number of processors versus speedup on a

logarithmic scale. The plots for both problems are shown
in Figure 4. The grey area represents super-linear speedup.
Since both scales are logarithmic, processors (1, 8, 32, 128,
and 512) and their speedup are nicely spaced. The key
information from this graph is that scalability improves with
problem size. Smaller problem can deteriorate in perfor-
mance when given too many processors. Also note that the
best performance is close to linear. This means that given a
big enough problem, we utilize the resources efficiently.

IV. RELATED WORK

The idea of symbolic execution dates back to over three
decades [15]. Renewed interest in symbolic execution is
seen in the last decade [4], [7], [9]. Generalized Symbolic
Execution [14] extended the concept to concurrent programs
and complex structures.
Symbolic execution for large or complex units is difficult

due to solving complex constraints for test generation.
Larson and Austin [17] combined symbolic execution with
concrete execution to overcome this limitation. They used
symbolic execution to make the path constraint of a concrete
execution and find other input values that lead to errors along
the same path.
DART (Directed Automated Random Testing) [10] is

one of the first tools to systematically combine symbolic
execution and concrete execution. After forming a path con-
straint during concrete execution, they backtrack on the path
constraint by negating clauses, solve the new constraints, and
re-run concrete execution expecting it to follow a new path.
When it is not feasible to solve the modified constraints, they
substitute random concrete values. Another simultaneous
effort was EGT (Execution Guided Test Cases) [6] using



a similar approach. Lastly, CUTE (Concolic Unit Testing
Engine for C) [23], another tool using similar approach, can
handle pointers and complex structures. Another symbolic
execution tool CREST [3] was introduced for comparing
various search strategies. This is the tool we are basing our
implementation upon.
In our own previous work, we parallelized the Korat

algorithm [20], [24]. Parallel model checkers have also been
introduced. Stern and Dill’s parallel Murφ [25] is an example
of a parallel model checker. A similar technique was used
by Lerda and Visser [26] to parallelize the Java PathFinder
model checker [19]. Parallel version of the SPIN model
checker [12] was produced by Lerda and Sisto [18]. More
work has been done in load balancing and reducing worker
communication in these algorithms [22], [16], [13].
Parallel Randomized State Space Search for JPF by

Dwyer et al. [8] takes a different approach with workers
exploring randomly different parts of the state space.

V. CONCLUSIONS
We presented ParSym a novel algorithm for parallel sym-

bolic execution. We discussed the potential of parallelization
in symbolic execution even for small problems. We exploited
this parallelism in our parallel symbolic execution algorithm.
We evaluated our algorithm on widely used GREP tool
which contains 15K lines of C code. We also tested it
for generation of complex structures. We tested it on a
cluster and observed high speedups. We observed very high
efficiency on up to 32 processors for all but the smallest
of problems. We were able to finish tasks in a couple
minutes using 512 processors whereas serially it was taking
hours. We believe these optimizations will allow symbolic
execution to scale to many more problems and its impact on
testing real software will increase.
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